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Developing flow on a vertical wall 
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(Received 9 May 1974 and in revised form 13 October 1976) 

Developing laminar flow in a liquid film issuing from a full slot and descending along 
a vertical wall is analysed for the limiting cases of low flow rate and high surface 
tension. Neither limiting case is approached uniformly and the singular perturbation 
method with matched asymptotic expansions is employed. The location of a free 
boundary, the curved meniscus, is unknown a priori, and the limiting meniscus 
profiles are obtained. An interesting viscous boundary layer is found at low flow rates. 

1. Introduction 
This paper reports one step towards understanding the fluid mechanics of free- 

surface flows. We analyse two limiting cases of the transition flow of liquid along a 
vertical wall from a full slot to a falling film of uniform thickness. The geometric 
configuration considered has several applications. It may be encountered, for example, 
a t  the top of a wetted wall column. It may also be adapted as a prototype model for 
the distribution slot of a slide hopper, which is an important industrial coating tool 
(Mercier et al. 1956). 

We first identify two regions of the flow field in which different combinations of 
pressure, viscous tractions, body force and boundary conditions dominate as the ratio 
of the downstream film thickness to the slot width assumes small values. We then 
guess the nature of a principal limit of the problem and introduce appropriately scaled 
dimensionless variables, and finally we carry out asymptotic analyses, matching in 
the usual manner the representations of the flow field obtained in the two regions. We 
treat in the same way a second limiting case, in which the ratio of slot width to the 
capillary length is small. 

The results provide insight into the interplay of factors which influence the entire 
range of flow conditions, not just the limiting cases which can be handled by asymp- 
totic methods. They illuminate viscous flow bounded by a curved meniscus whose 
location is unknown a priori: an important class of free-boundary problems which is 
still not well understood. Moreover the analysis is of interest as a singular perturbation 
problem in which a viscous boundary layer emerges in the limit of small flow rate. 
Computer simulations of viscous flows with curved free boundaries are being developed. 
The asymptotic solutions provide test cases for numerical methods and first approxi- 
mations for numerical solution of the governing equations, as well as answers when the 
length scales in the simulation are so disparate that numerical methods are im- 
practicable. 

t Present address : Research Laboratories, Eaatman Kodak Company, Rochester, New York. 
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FIGURE 1. Developing flow from a slot. 

Previous studies of developing flow from a slot have used the boundary-layer 
equation and have neglected surface tension. Cerro & Whitaker (1971) solve the 
boundarjv-layer equation numerically. Stucheli & Ozisik (1976) and Murty & Sastri 
(1973) integrate the boundary-layer equation across the film and substitute a guessed 
velocity profile in order to reduce the probIem to an ordinary differential equation 
for the film thickness. Thomas & Rice (1973) report measured velocity profiles. The 
two limiting cases studied here have not been previously examinedl to our knowledge. 

Developing flow of a falling liquid film is considered in the limit of low flow rate in 
$ 3 and in the limit of high surface tension in $4 .  In both cases the principal limit of 
the problem's solution is approached non-uniformly, and the singular perturbation 
method with matched asymptotic expansions is used to begin an asymptotic rep- 
resentation of the flow field. The scaling of the low-flow-rate limiting case is of parti- 
cular interest, because it involves disparate length scales in both spatial dimensions, 

2. Mathematical formulation 
Newtonian liquid of uniform properties flows through a slot comprised of two vertical 

walls (figure I). One wall of the slot terminates, and below this point there is a liquid/ 
air int,erface. The slot is sufficiently long that Poiseuille flow is established well up- 
stream of the end of the slot, and the continuing wall is long enough that a gravity- 
driven, rectilinear flow develops downstream. The ambient air exerts negligible 
viscous traction on the int'erface and, being muchless dense than the liquid, is modelled 
by a uniform pressure. The developing film flow is steady and two-dimensional. 

The liquid properties are the density p, kinematic viscosity Y and surface tension u. 
The acceleration due to gravity is G ,  the slot width is W and the downstream film 
thickness is D.  A convenient derived length is the capillary length C = (a/pG)* char- 
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acteristic of free static menisci. A n  x, y Cartesian co-ordinate system is oriented as 
shown in figure 1. 

We first scale the governing equations for the region near the end of the slot. Here 
the horizontal dimension of the film is of the order of the slot width, and distance in 
this region is measured in units of W .  The magnitude of the liquid velocity is of the 
order of that associated with the Poiseuille flow, and consequently the velocity is 
made dimensionless with GD3/1, W .  The first limiting case considered below is that of 
low flow rate, and anticipating nearly hydrostatic conditions near the slot exit when 
the flow rate is sufficiently small, we scale the difference between the pressure in the 
liquid and atmospheric pressure with pG W .  The dimensionless governing equations 
are then 

(2.1) I R[uu, + VU,] = - d - 3 ~ ~  + u,, + u , ~  + 
R[uv, + vvY] = - d-3py + vYy + vXx, 

ux+v,  = 0. 

On the rigid boundaries u = 0 and v = 0. The free-surface boundary conditions on 
y = h(x), x > 0, are 

- p  = d3[2uz + h,(u, + v,)] + w-",, [I + h'l-4 
(2.2) 

0 = [U,+V,] [ l  -h:]-4hxu,, v = h,u. .> 
The asymptotic regimes upstream and downstream, respectively, are 

u+2[y-y2] ,  v+O as z-t-co, 0 < y < 1, (2.3) 

~ - + d - ~ [ d y - $ y 2 ] ,  v-tO, h - td  as x-tco, 0 < y < d .  (2.4) 

Here u and v are the x and y components of the dimensionless velocity vector, I, is 
the dimensionless pressure, and h(x) is the value of y a t  the free surface. The three 
dimensionless parameters are d = D /  W ,  the ratio of the film thickness far downstream 
to the width of the slot; w = W/C,  the ratio of the slot width to the capillary length; 
and R = GD3/v2 = (GD3/uW) W/u, the Reynolds number. 

That the boundary conditions given here model the flow realistically near the three- 
phase line where the liquidfair meniscus contacts the solid is not certain. Michael 
(1958) and Richardson (1967) have shown that when inertial effects are neglected, 
and when the meniscus and rigid wall are planar and unbounded, the above equations 
demand that the meniscus and rigid wall be coplanar and predict unbounded velocity 
gradients and a negatively unbounded pressure at  the contact line. Casual observations 
suggest that angles between free and rigid surfaces other than 7~ can occur where 
liquid flows near a stationary contact line. It is not clear, however, that the work of 
Michael and Richardson represents a local analysis of (2.1)-(2.4). We do not carry our 
analyses to the point where the flow near the contact line must be examined. We 
detail the nearly rectilinear, downstream portion of the flow field, which, in the two 
limiting situations we consider, is unaffected by the details of flow in the slot, and 
indeed of the exact configuration of the slot. 

Equations (2.1) are too complex to solve analytically. Asymptotic analysis is in 
order. 

11-2 
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3. Limiting case of small flow rate 
When d = D/W is small there are two horizontal length scales. Near the slot exit 

the liquid film has a thickness of the order of W ,  but downstream the thickness is of 
the order of D < W .  If viscous, pressure and surface-tension forces are of equal 
importance where the film has nearly its h a 1  thickness D, then viscous forces must be 
of secondary importance near the slot exit. That is, surface tension and a pressure 
field which is nearly hydrostatic should dominate the shape of the free surface just 
downstream of the slot. 

When the formal limit of (2.1)-(2.4) as d+O is taken, the following simplified 
equations result: 

(3.1) 1 0 = -p:+1, 0 = -pQ U' 
- ~ O ( X ,  ho) = w-'hz2 [I + (hz)']~-%, 

ho = 1 at z = 0. 

Asuperscript zero denotes thelimit of afunction as d 3 0. Equations (3.1) are equivalent 
to the Laplace-Young equation for static menisci, and the limiting profile is an elastica 
determined entirely by a hydrostatic pressure field and surface tension (Maxwell & 
Rayleigh 1910). Two additional boundary conditions are needed before the static 
meniscus which is the limiting free surface near the slot exit can be specified. 

The dependent and independent variables must be redefined to reflect the change 
in length scales in the region of viscous flow downstream. To motivate our second set 
of variables we briefly outline a possible scaling procedure. Clearly y and h can be 
divided by d to obtain replacement variables of order unity. Moreover, the rectilinear 
flow far downstream establishes that u is of magnitude l / d  there. The new x co-ordinate 
must reflect the vertical length over which viscous forces are important as well as the 
distance below the slot a t  which viscous forces become important. We therefore 
anticipate the form (x-1)/dn for the rescaled x co-ordinate, where 1 > 0 and n > 0 
are yet to be determined. When the two terms in the continuity equation are required 
to be of the same order, v is found to be of order d?. To rescale the pressure variable 
and determine the value of n, we can anticipate that pressure, viscous and surface- 
tension forces are equally important where the film thickness is nearly D. Alter- 
natively we can pursue the assumption that the upstream and downstream expressions 
for the pressure and surface profile match in intermediate limits (Van Dyke 1964, 
p. 91) to complete the rescaling. 

The variables scaled for the region of viscous flow are 

( 3 4  I 2 = (x-Z)/d*, ?j = y/d, = h/d, 

?i = du, ii = dfv, @ = pldf. 

Only I ,  the value of x near which viscous forces become important, is unspecified. 
The length above x = 1 over which viscous forces are significant is found to be of order 
df and is much larger than d, the magnitude of the film thickness downstream. The 
slope of the film profile ir? the viscous region is small, being of order d i ,  and the hori- 
zontal component of velocity v is smaller than the vertical component u by a factor 
of order d8. In  terms of the variables (3.3) the problem is 

(3.3a) Rd%[iiZ, + ZZsj = - Fz + Zgg + d* Z2* + 1, 
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(3 .3b)  

(3 .3c)  

( 3 . 3 4  

(3 .3 . f )  

(3 .39 )  

(3 .3h)  

(3 .3e)  

(3.4 a-c) 

(3 .4d- f )  

(3 .4g )  

(3 .4h)  

Note that the limiting pressure varies vertically but is constant across the film. 
Indeed the pressure depends on the profile curvature, and the resulting pressure 
gradient, along with gravity, drives the nearly rectilinear flow in the film. Equations 

-0 P3 - - 1 - (hO)-3, (3 .5a )  

(3.5 b, c )  

hgZI = w2[(zO)-3- 11; Zo+ 1 as %-too. ( 3 . 6 4  e )  

The velocity profile is semi-parabolic and the streamline inclination is proportional 
to the slope of the free surface. 

Let g(r) be the solution to 

(3 .4)  can be developed to give - 

GO = (@)-I [ y p  - * ( y / p ) 2 3 ,  Tjo = p ( g / j $ )  GO, 
- 

g W r = 9 - 3 - 1 ;  g -  1+10-4exp[-3*(r-5)] as r+co ( 3 . 6 )  

(the numbers 
differential equation ( 3 . 5 4  for Xo is then 

and 5 were chosen arbitrarily). The solution to the third-order 

Eo(3) = g ( d Z  + b )  (3 .7 )  

for some value of b. The effect of a change in the value of b is to translate the profile 
without changing its shape. The asympt,otic behaviour of g as r -+ - co is given by 

g - - Qr3+ &c0 r2 + c1 r + c2 + + . . . , (3 .8 )  

where the ci are known constants. We have determined g numerically, and the results 
are given in figure 2. Of course go could be expressed in terms of any translation of g 
parallel to the r axis, and, any function obtained in this way would have an asymptotic 
expansion of the form (3 .8 ) .  Although the values of the ci change with translation, 
the values of 

Il = gc; + c1, I, = QcZ + co c1 + c2 (3 .9)  

depend only on the shape of the function and remain unchanged. 
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Equation (3.6) 
1 

L 

The profile (3.7) obtained for the region of viscous flow must be matched with ho(z), 
the static meniscus found near the slot exit. For this purpose the power-series expan- 
sion of ho(x) about x = I is required; it has the form 

W 

ho(x) = C e,(x-Z)a. 
n=O 

(3.10) 

Matching in the usual manner (Van Dyke 1964) we find that 

e,  = el = e2 = 0, e3 = -&w2. (3.11a, b )  

As previously remarked, two additional boundary conditions are needed before (3.1) 
can be solved for ho(z). The relations (3.11) are restrictions on ho at x = I ,  where E 
is not yet known. Consequently three conditions on ho at x = Z are required to determine 
both ho and I ;  from (3.11) 

ho(Z) = @ ( I )  = hE,(Z) = 0. (3.12) 

Though no more degrees of freedom are available, it turns out that (3.11 b )  is satisfied; 
see (3.19). 

The solution to the combined problem (3.12) and (3.1) can be expressed in terms of 
elliptic integrals: 

po = x-1 ,  (3.13) 

(3.14) 

(3.15) 

$ ( x )  = sin-l[1 -$w2((l-z)2]4, (3.16) 

$o = $(o) = sin-1 [I - iw212]3. (3.17) 

Here P(k, $) and E(k ,  $) are the elliptic integrals of the first and second kind, res- 
pectively. K is the complete elliptic integral of the first kind and E is the complete 

h0 = w 4 { 2 [ E  - E(k,  $ ) ]  - [K - F(k,  $)I}, 
w = 2 CE - E(k, $011 - [li: - m, $011, 
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elliptic integral of the second kind. The modulus k is 1/42. Equation (3.13) gives the 
hydrostatic pressure field and (3.14) the static meniscus obtained in the limit of small 
flow rate. Equation (3.15) gives w as a function of WE. We have restricted ourselves 
to the case 0 < wZ < 4 2  for the convenience that ho(x) be single valued, although 
solutions exist outside this interval. 

When the capillary length is much larger than the slot width, w is small and 

as w+O. (3.18) 

(3.19) 

and consequently the relation (3.11 b)  demanded by matching is satisfied. 
The remaining unknown is the constant b appearing in (3.7); it  must be determined 

by matching at  higher orders. If the asymptotic expansions valid near the slot exit 
proceed 

I hO N Q( 64 - w32)3 - 3- 6 3 ~ 4 (  6f - w#x)2 
6 6  

+ ibw*(6i  - w&c)~ + . . . 
I N 6 f w f - 1 6 9 ~ ) + . . .  66 

The power-series expansion of ho about x = I begins 

hO(2) N g W 2 ( 1 - 2 ) 3 + ~ W ~ ( l - z ) 7 +  ...) 

(3.20) 

then viscous forces play no part in determining h(1) and $I), and the perturbation is 
onto another static meniscus. The requirement9 of matching and the fact that 

h q o )  = 0 

can be used to show that h(l) and p") are both zero. The fact that p(l)  is zero implies, 
again through matching, that b = c0. As a result the final expression for z0 is 

zo(5) = g(W3Z + c0), c0 = - 0.4294. (3.21) 

Equations (3.14) and (3.21) give the entire meniscus profile when the flow rate is 
small, which implies D < W.  In  this case the film thickness varies widely, and viscous 
forces are important only in the narrower portions, which are downstream. Near the 
slot the film is relatively thick and the effects of liquid motion are small. Pressure, 
surface-tension and gravitational forces dominate, and the meniscus has a static 
equilibrium shape. Near x = Z the slope and curvature of the meniscus become small 
and the film thin enough that viscous forces begin to be important, influencing 
meniscus shape through the pressure at the free boundary. Further downstream, as 
pressure forces wane, the viscous forces come into balance with the force of gravity, 
and the meniscus approaches planarity. Throughout the region of viscous effects, the 
velocity and pressure distributions can be found from the meniscus profile, according 

The limit of the film ,profile as d+O with position with respect to the slot fixed 
(z fixed) is the static meniscus ho(x) for 0 < x < Z and the line y = 0 for x > I ,  which 
might be thought of as a film of zero thickness. The length I, given by (3.15), or the 
asymptotic approximation (3.18), is the distance below the slot exit at  which the 
elastica of which th.e static meniscus is a segment contacts the wall. According to 
(3.12) the elastica is tangential and has an inflexion point there: an osculating contact. 

to (3.5). 
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I =  

FIGURE 3. Film profile when the flow rate is low. The broken line is part of the limiting static 
meniscus which begins a t  the contact line. The film profile departs from this limiting static 
meniscus over the viscous transition region which leads to the rectilinear flow downstream. 

Consequently this limit of the film profile has continuous curvature, but higher 
derivatives are discontinuous at x = 1. 

It is the viscous flow, lost in the principal limit, which smooths the transition to a 
planar meniscus downstream. This viscous transition region collapses towards the 
point x = 1 on the wall as the flow rate decreases. Its structure is retained in a second 
limit process detailed in (3.2) in which the co-ordinates x and y move towards the 
point x = 1 on the wall to maintain a relative position within the collapsing viscous 
transition region. The situation is summarized in figure 3. 

When d is sufficiently large the shape of the free surface near the slot is significantly 
influenced by dynamio forces. The equations which predict the first effects of viscosity 
when the Reynolds number is small are, from (2.1)-(2.3), 

0 = - p p  + u& + u&, (3.22a) 

0 = - p p  + v&/ + v:,, 
0 = u: + v;, 

(3.22 b )  

(3.22~) 

0 = [?kg + v;] [ 1 - ( h y ]  - 
vo = h;uo 

on y = ho(x), 
(3.22d) 

(3.22e) 

uo+2[y -y2 ] ,  vo+O as x+--oo, 0 < y < 1, (3.22f 1 
uo=vo=O on y = O ; y = l , x < O .  (3.229) 

This is a difficult slow-flow problem, even though the domain on which the field 
equations are to be solved is specified. The normal-stress boundary conditions (2.2) 
generate a second-order differential equation for the perturbation of the surface 
profile caused by this flow. Joseph (1 974) and Joseph & Sturges ( 1975) have encountered 
and solved problems of this type in more regular domains. Joseph does not discuss 
the nature of his solutions near the contact line. 
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4. Limiting case of large surface tension 
A second limiting case of some interest is w = W/C+O. Because surface tension 

appears only in this parameter, the limit may be thought of as surface tension tending 
to infinity. It is reasonable to presume that a t  a fixed station x > 0 the limit of the 
film thickness h is I ,  because the effect of increasing surface tension ought to be 
decreasing meniscus curvature. Indeed the curvature ought to become uniformly small 
as a+co, and if the meniscus is everywhere no more than slightly curved the flow 
beneath it should be nearly one-dimensional, except in the immediate vicinity of the 
slot exit. There, owing to the change from the no-slip boundary condition to the free- 
surface boundary condition, the flow is oertainly two-dimensional. Finally, because 
h+d as x+co regardless of the value of w, it  is clear that the limit h(x)+ 1, w+O 
is not approaohed uniformly in x.  We conclude that the singular perturbation method 
is once again required. 

We postulate that asymptotic expansions in w begin 

u N @+ ..., v N G O +  ... as w+O, (4.1) I p N A w - ~ + $ ~ + . . .  

h N  I +  ... 
where a and A are constants, and we introduce these expressions into (2.1)-(2.4). 
The first non-trivial problem is 

R[G0&: + = - + fitu + f igz  + dp3, (4.2a) 

(4.2b) 

a: + s; = 0, ( 4 . 2 ~ )  

0 = a;(., 1)  = P ( x ,  1)  for x > 0, (4.2d) 

0 = a0(x, 1 )  = Go(x, 1) for x < 0, (4.2e) 

0 = &O(x, 0)  = a0(x, 0 )  for all x, ( 4 . W  

&O+2(y-y2), 8 O - t . O  as x-+-m, 0 < y < 1.  (4-w 

This problem is formidable, even though the domain is rectangular. It should be 
possible to solve it approximately when inertial terms are negligible, as is likely 
when R is small (highly viscous liquid). With the acceleration terms removed the 
problem is linear, and when a stream function is introduced the field equations 
collapse into the biharmonic equation, which can be solved on the rectangular strip 
by a Fourier-transform method and the Wiener-Hopf technique. Richardson (1967, 
1970) employed this solution procedure and Ruschak (1974) applied it to a similar 
problem. 

Because the solution to (4.2) does not satisfy the downstream boundary conditions 
we rescale (2.1) and consider a second set of asymptotic expansions. The interval 
over which h is nearly 1 should expand downstream as w + 0, and we anticipate that 
the new x co-ordinate will have the form 2 = wnx, with n > 0. The rescaling can proceed 
in the manner sketched in the preceding section. The required second set of variables is 
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v" = &a, (4.4f) 

. i i = G = O  on y " = O ,  (4 .4d 

.ii+d-3(dy"-+y"2), G+O, h+d as $+a, 0 < y" < d .  (4.4h) 

The nearly rectilinear nature of the flow downstream of the slot is reflected in these 
equations. In  the limit w+O a much simpler problem, almost identical to (3.4), 
results. With a superscript zero denoting the limit of a function as w + 0, we obtain 

95: = 1 -d3/(K0)3, (4.5a) [cf. (3.5)] 

CO = (K0)-1(y"/KO) [l - 4(y"/KO)],  (4.5b) 

GO = & 5 : ( y " / K O )  2 0 .  (4.6c) 

Furthermore the differential equation and boundary conditions which determine the 
limit of the meniscus profile are 

and when d is less than 1 the solution to (4.6) can be expressed in terms of the function 
g(r)  defined in (3.6): K0(5) = dg[Z/d* +g-l( I / d ) ] .  (4.7) 

Thus the flow downstream from the slot is nearly rectilinear and can be described 
using the lubrication approximation when w is small. The vertical component of 
velocity follows a semi-parabolic distribution given by (4.5). The pressure gradient is 
responsible for the departure from strictly rectilinear flow, and the slight curvature 
of the meniscus accommodates the pressure variation along the film. Across the film 
the pressure is uniform although it is not atmospheric. 

It is possible to obtain the second terms in the downstream asymptotic expansions. 
Interestingly, the governing differential equations are the boundary-layer equations, 
with a pressure gradient imposed by the action of surface tension in the curved 
meniscus. The problem depends on ho(5) and its derivatives, and so numerical solution 
is required except in the special case d N 1. 

In  the preceding section we found that the low-flow-rate limit of the free surface 
near the slot exit is a static meniscus originating at the slot edge and contacting the 
wall tangentially and with zero curvature. To show how this singular limit can arise 
we now examine low-flow-rate expansions of the high-surface-tension result down- 
stream of the slot exit. The expression for the thickness of the liquid film (4.7) can be 
written as 

Ko(5) = dg[d-*(5-6*)+cO-26-~Ild*+26-tIad*+ ...I. (4.8) 
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When P is held fixed, 0 < P < 69, (4.8) leads to the expansion 

KO($) N - h(9 - 6#)s + IJ(2 - 69) + 6-+(9 - 6+)2] dt + . . . . (4.9) 

The leading term here is identical to the leading term of (3.18), which is an expansion 
for small d and small w, and it indeed represents a static meniscus which has no curva- 
ture at the point where it is tangential to the wall. Furthermore there is no term of 
order d t ,  in line with the remarks just after (3.20). Finally it is evident from (4.8) 
that the limit of KO($) is zero when 9 > 64. 

The form of a boundary-layer variable is apparent in (4.8).  We let 

z = (2 - 6Q)/d9 (4.10) 

and with z fixed again expand (4.8). With z fixed 5 approaches the point of tangency 
of the static meniscus with the wall: 

Ro(P)/d N g(z + c0) - 26-#11 g’(z + c0) d i  

+ 26-f[12 g‘(z + co) + g”(z + co)] dt + . . . . (4.11) 

This second expansion corresponds to (3.21). This short exercise provides added 
insight into the singular - and perhaps surprising - nature of the small-flow-rate 
limiting case, in which a viscous transition region or boundary layer emerges. 

5. Concluding remark 
The analysis of low flow rates, corresponding to thin films, has some kinship with 

analyses of dip coating, in which a film is deposited on a sheet or ribbon that is drawn 
out of a liquid bath. The interested reader may wish to compare our development with 
the classical investigation of dip coating by Landau & Levich (1942). There is a related 
analysis of the flow of liquid around long bubbles in tubes by Bretherton (1961). 
Neither of these studies employs the method of matched expansions. Both are correct 
as far as they go, but they are not complete. In  particular they overlook the use of a 
boundary-layer co-ordinate pivoted about the locus where the limiting static meniscus 
would contact the wall. Consequently their matching procedures are ad hoc, and they 
do not make clear how higher-order effects could be calculated. The approach we have 
taken can be carried over to these older problems. 

REFERENCES 

BRETHERTON, F. P. 1901 The motion of long bubbles in tubes. J .  FZuid Mech. 10, 106-188. 
CERRO, R. L. & WHITAKER, S. 1971 Entrance region flows with a free surface: the falling liquid 

film. Chem. Engng Sci. 26, 786-798. 
JOSEPH, D. D. 1974 Slow motion and viscometric motion; stability and bifurcation of the rest 

state of a simple fluid. Arch. Rat. Mech. Anal. 56, 99-167. 
JOSEPH, D. D. & STUROES, L. 1975 The free surface on a liquid filling a trench heated from its 

side. J .  Fluid Mech. 69, 606-689. 
LANDAU, L. D. & LEVICH, V. G. 1942 Dragging of a liquid by a moving plate. Acta PhyySiCo- 

chimica U.R.S.S. 17, 42-64. 
MAXWELL, J. C. & RAYLEIOH, LORD 1910 Capillary action. Encyclopedb Britannk, 11th edn, 

vol. 6. New York. 
MERCIER, J. A. et d. 1950 Multiple coating apparatus. U.S. Patent no. 2,701,419. 



316 

MICHAEL, D. H. 1958 Mathematiba 5,82434. 
MURTY, N. S. & SASTRI, V. M. K. 1973 Accelerating laminar liquid film along an inclined wall. 

Chem. Engng Sci. 28, 869-74. 
RICHARDSON, S. 1967 Slow viscous flows with free surfaces. Ph.D. dissertation, Cambridge 

University. 
RICHARDSON, S. 1970 A ‘stick-slip’ problem related to the motion of a free jet a t  low Reynolds 

numbers. Proc. Camb. Phil. SOC. 67, 477-489. 
RUSCHAK, K. J. 1974 The fluid mechanics of coating flows. Ph.D. dissertation, University 

of Minnesota. 
STUCHELI, A. & OZISIK, M. N. 1976 Hydrodynamic entrance lengths of laminar falling films. 

Chem. Engng Sci. 31, 369-72. 
THOMAS, W. C. & RICE, J. C. 1973 Application of the hydrogen-bubble technique for velocity 

measurements in thin liquid films. J .  Appl. Mech. 40, 321-25. 
VAN DYKE, M. 1964 Perturbation Methods in Fluid Mechanics. Academic Press. 

K .  J .  Ruschak and L. E .  Scriven 


